From: Sent: FloydsFork (EEC) <FloydsFork@ky.gov> Tuesday, December 03, 2013 8:53 AM

Cc:

christie.oliver@uky.edu

Subject:

Floyds Fork Watershed Nutrient Management Strategy Survey

Dear Floyds Fork Stakeholder:

The Kentucky Water Resources Research Institute at the University of Kentucky has been leading a stakeholder engagement process involving members of the Floyds Fork community over the last two years. The objective of the process is to identify community preferences for different strategies or best management practices for use in minimizing nutrient impacts to Floyds Fork. This process has involved interviews, focus group meetings, and public meetings which you may have attended. Here is the link for the project website:

http://www.uky.edu/WaterResources/FF/

During the summer of 2013, three separate public meetings were held in which stakeholders were asked to provide preferences for 20 different management strategies that had been suggested by members of the community. The management strategies were divided into four broad categories: wastewater strategies, agricultural strategies, urban strategies, and policy strategies. Detailed information about each of the strategies can be found under the Management Strategies Tab on the main page of the project website cited above.

We have now developed an on-line survey to allow community members who were not able to attend one of public scoring meetings, to register their preferences online. The survey can be taken by clicking on:

https://uky.az1.qualtrics.com/SE/?SID=SV_6xN9SZnpmQOXZe5

The survey is not expected to take more than 30 minutes to complete. Once the survey is completed you will be transferred to the project website.

If you know of any other stakeholders who did not participate in the public scoring meetings but would be interested in participating in the online survey, please feel free to forward this email to them.

Christie Oliver, ABD, MBA, MSMIT
Communications Director
University of Kentucky
Kentucky Water Resources Research Institute
233 Mining and Mineral Resources Building
504 Rose Street
Lexington, KY 40506-0107

859-257-8637 fax 859-323-1049

christie.oliver@uky.edu

From:

Thomas, Chris

Sent:

Tuesday, February 05, 2013 3:48 PM

To:

Goodmann, Peter (EEC)

Cc:

Newbold, Amy; paulette.akers@ky.gov, Wool, Tim

Subject:

Fw: Floyds Fork Questions

Pete

Hey man!

Have you or your folks had a follow-up meeting with Scott/Scott's folks to discuss this chart and if so, what was the outcome? Seems like we should have a KDOW/EPA joint discussion with SMG sometime late Feb or early March before we go up to the TAC/Public Meeting. Want to make sure DOW and EPA are in agreement on what goes into the response box for each of the issues (and that we have a response before the next meetings).

Thoughts?

Chris Thomas, Chief Pollution Control and Implementation Branch Water Protection Division United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

----- Forwarded by Chris Thomas/R4/USEPA/US on 02/05/2013 03:39 PM -----

From:

Bea Chapin <beac@smithmanage.com>

To:

Chris Thomas/R4/USEPA/US@EPA, "Peter.Goodmann@ky.gov" <Peter.Goodmann@ky.gov>, Scott Smith

<scottr.smith@smithmanage.com>

Cc: Date: Kori Andrews <koria@smithmanage.com>

02/04/2013 01:37 PM

Subject: Floyds Fork Questions

Kori Andrews requested that I send the attached to you. Please contact her at koria@smithmanage.com if you have any questions.

Bea Chapin

Administrative Assistant

Smith Management Group A Certified Woman Owned Business 1405 Mercer Road Lexington, KY 40511 859-231-8936 ext. 123 859-231-8997 Fax # beac@smithmanage.com

www.smithmanage.com

Go Green. Please don't print this e-mail unless you really need to.

Issues_2-4-2013....

From:

Thomas, Chris

Sent:

Thursday, February 07, 2013 7:49 AM

To:

'Goodmann, Peter (EEC)'

Subject:

Re: Fwd: SAVE THE DATES: EPA / State Water Directors Meeting - April 30 - May 2, 2013 in

Atlanta GA

So should I propose for you to talk about?

Floyds Fork as a case study? Gulf Hypoxia Task Force with MS and TN?

Chris Thomas, Chief Pollution Control and Implementation Branch Water Protection Division United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

5		

From:

Thomas, Chris

Sent:

Wednesday, January 30, 2013 12:45 PM

To:

Goodmann, Peter (EEC); Wool, Tim; Newbold, Amy

Subject:

Fw: Upcoming Floyds Fork Meetings

fyi - Follow-up as needed. After looking at the attachment, if we all need to talk again, please set it up. Thanks!

Note Kori will be sending an updated list on Monday.

Chris Thomas, Chief Pollution Control and Implementation Branch Water Protection Division United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

---- Forwarded by Chris Thomas/R4/USEPA/US on 01/30/2013 12:43 PM ----

Erom:

Kori Andrews <koria@smithmanage.com>

To:

Scott Smith <scottr.smith@smithmanage.com>, Chris Thomas/R4/USEPA/US@EPA

Date:

01/30/2013 11:44 AM

Subject:

RE: Upcoming Floyds Fork Meetings

Chris.

This list hasn't been updated following the TAC subcommittee meetings that have been/are being held last week and this week. We appreciate Tim Wool and Brian Watson participating in these meetings via teleconference.

Our staff is in the process of working on the update/revisions and I have asked them to complete it by Monday. I will forward a revised copy of the list upon its completion. In the meantime, here is what has been submitted to KDOW.

Thanks for reaching out to us,

Kori

From: Scott Smith

Sent: Wednesday, January 30, 2013 10:40 AM

To: Thomas.Chris@epamail.epa.gov

Cc: Kori Andrews

Subject: RE: Upcoming Floyds Fork Meetings

I've got that running list of issues I've kept going from the beginning. I've passed them to Pete and told him I didn't want a response at this time, I just want to go through it and make sure we agree on what's come off and what issues remain.

Kori Andrews is the list "keeper". I'll have her forward it to you. If you think I need to work through with you on these issues instead of Pete or a combination of both. Let me know.

I appreciate your interest.

From: Thomas.Chris@epamail.epa.gov [mailto:Thomas.Chris@epamail.epa.gov]

Sent: Wednesday, January 30, 2013 8:39 AM

To: Scott Smith

Subject: Upcoming Floyds Fork Meetings

Scott

Hello there! Just wanted to check in with you before the next Floyds Fork TAC and Public Meeting and see if there are any items or requests that you and/or your folks believe remain unaddressed by EPA. EPA, Tetratech, and KDOW have had extensive conversations with some of the subgroup leaders since the last TAC and believe that we have resolved and addressed all of the issues that have been brought to our attention (still actively working out the last details of the manure issues).

If you and/or your folks have any issues or concerns, it would be advantageous for everyone for us to know about them ahead of time and, if possible, have them resolved before we get into the meetings.

I do appreciate all you're doing to help move this project along and to make it successful! I look forward to hearing from you.

Chris

Chris Thomas, Chief

Pollution Control and Implementation Branch

Water Protection Division

United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov

Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this

Issues_1-8-2013....

message in error, please notify the sender immediately by email and delete all copies of the message.

From:

Thomas, Chris

Sent:

Wednesday, January 30, 2013 12:39 PM

To:

'Goodmann, Peter (EEC)'

Subject:

Fw: Upcoming Floyds Fork Meetings

fyi - Will let you know what I get from Kori.

Chris Thomas, Chief Pollution Control and Implementation Branch Water Protection Division United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

---- Forwarded by Chris Thomas/R4/USEPA/US on 01/30/2013 12:38 PM -----

From:

Scott Smith <scottr.smith@smithmanage.com>

To:

Chris Thomas/R4/USEPA/US@EPA

Cc:

Kori Andrews <koria@smithmanage.com>

Date:

01/30/2013 10:39 AM

Subject:

RE: Upcoming Floyds Fork Meetings

I've got that running list of issues I've kept going from the beginning. I've passed them to Pete and told him I didn't want a response at this time, I just want to go through it and make sure we agree on what's come off and what issues remain.

Kori Andrews is the list "keeper". I'll have her forward it to you. If you think I need to work through with you on these issues instead of Pete or a combination of both. Let me know.

I appreciate your interest.

From: Thomas.Chris@epamail.epa.gov [mailto:Thomas.Chris@epamail.epa.gov]

Sent: Wednesday, January 30, 2013 8:39 AM

To: Scott Smith

Subject: Upcoming Floyds Fork Meetings

Scott

Hello there! Just wanted to check in with you before the next Floyds Fork TAC and Public Meeting and see if there are any items or requests that you and/or your folks believe remain unaddressed by EPA. EPA, Tetratech, and KDOW have had extensive conversations with some of the subgroup leaders since the last TAC and believe that we have resolved and addressed all of the issues that have been brought to our attention (still actively working out the last details of the manure issues).

If you and/or your folks have any issues or concerns, it would be advantageous for everyone for us to know about them ahead of time and, if possible, have them resolved before we get into the meetings.
I do appreciate all you're doing to help move this project along and to make it successful! I look forward to hearing from you.
Chris

Chris Thomas, Chief

Pollution Control and Implementation Branch

Water Protection Division

United States Environmental Protection Agency, Region 4

thomas.chris@epa.gov

Tel: 404.562.9459

CONFIDENTIALITY NOTICE

This message is intended exclusively for the individual(s) or entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

Subject: Location: FW: Discussion on Floyd's Fork WASP model and assistance needed. R4-15T98-Water-Branch-Conf-Rm/Sam-Nunn-Federal-Building-ATL

Start: End: Tue 7/19/2016 8:00 AM Tue 7/19/2016 9:00 AM

Recurrence:

(none)

Meeting Status:

Accepted

Organizer:

Purify, Johnnie

Please plan to participate.

----Original Appointment----

From: Purify, Johnnie

Sent: Wednesday, July 13, 2016 5:52 PM

To: Purify, Johnnie; Wool, Tim; Danois, Gracy R.; Blount, Tiana; Fernandez, Glenn; Howell, Amanda; Benante, Joanne;

Baker, Frank; Melgaard, David

Subject: Discussion on Floyd's Fork WASP model and assistance needed.

When: Tuesday, July 19, 2016 8:00 AM-9:00 AM (UTC-05:00) Eastern Time (US & Canada).

Where: R4-15T98-Water-Branch-Conf-Rm/Sam-Nunn-Federal-Building-ATL

Meeting to discuss KY's email request below.

→ Join Skype Meeting

This is an online meeting for Skype for Business, the professional meetings and communications app formerly known as Lync.

Help

From: Keatley, Andrea (EEC) [mailto:Andrea.Keatley@ky.gov]

Sent: Wednesday, July 13, 2016 5:14 PM **To:** Purify, Johnnie < <u>Purify</u>. Johnnie@epa.gov >

Subject: Discussion on Floyd's Fork WASP model and assistance needed.

Hi Johnnie,

We contacted Tetra Tech a while ago to see what the cost would be to improve the LSPC/WASP model output. We are concerned with the calibration/validation of the model. The estimate received from Tetra Tech was above what we would be able to fund and this also initiated concern expressed from EPA to us regarding contacting Tetra Tech. During those discussion, EPA stated that Tim Wool would be available to assists us with our concerns with the model. We

developed some areas that we would like to have addressed and I am seeking out approval or confirmation that Tim will be available to us.

However before we begin any updates to the model, we would like to have agreed upon model goals for the calibration/validation of the model by both EPA and DOW. We have new point source information and we think it would improve the calibration and validation of the model.

Once our outcomes for the model are identified we would need assistance with:

- Updating facility information: We have collected outfall data from numerous smaller facilities. We would like
 to see that the default assumptions for facilities be changed to reflect this data. Additionally, a facility came
 on-line in 2008 that is not reflected in the current model; we would like to have this facility added.
- Calibrate/Validate: We would like the model recalibrated and validated based upon changes in point source information with a goal of meeting the model calibration/validation targets identified and agreed upon by DOW and EPA.
- 3. Run scenarios: We are working on identifying a few new scenarios to be run. We also request that output only be examined at identified compliance points (one per impaired segment). We are working on identifying the compliance points and will submit the lats/longs.
- 4. Modify model report: We would need the model reports to be updated with new point source and calibration information.

We are currently working on:

- 1. Confirming or updating our instream targets based on the outcome of our Bluegrass Nutrient study completed with 106 Supplemental funds.
- 2. Updating and confirming our compliance points.
- 3. Identifying the best scenarios to be run in the model.
- 4. Compiling and completing quality checks on the outfall data for the smaller facilities.
- 5. Identifying our goals for the model's quality objectives.

Andrea P. Keatley

Water Quality Branch Manager
Department for Environmental Protection
Division of Water
300 Sower Blvd, Third Floor
Frankfort, Kentucky 40601
(502) 782-6996
Andrea.keatley@ky.gov

http://water.ky.gov/waterquality/Pages/default.aspx

Subject:

Floyd Forks, KY TBD

Location:

Start:

Wed 2/17/2016 10:00 AM

End:

Wed 2/17/2016 11:00 AM

Recurrence:

(none)

Meeting Status:

Accepted

Organizer:

Danois, Gracy R.

Required Attendees: Optional Attendees:

Benante, Joanne; Wool, Tim; Blount, Tiana; Feingold, Amy; Purify, Johnnie

Melgaard, David

We will meet in 15A.

Call in number: 404-562-9947, 629947

Room information and call in number will be provided.

Subject:

KY TMDL Modeling Projects

Location:

15B; 404-562-9936 Code 629936

Start:

Thu 3/13/2014 2:00 PM

End:

Thu 3/13/2014 3:00 PM

Recurrence:

(none)

Meeting Status:

Accepted

Organizer:

Campbell-Dunbar, Shawneille

Required Attendees:

Fredenburg, Andrea (EEC); Chen, Hui (EEC); Wool, Tim; Belk, Elizabeth; FERNANDEZ,

GLENN; Howell, Amanda; Craig Hesterlee; Feingold, Amy

Purpose: To gain a clear understanding of KY modeling needs related to Floyds Fork and Gun Powder and determine how the Region can help

Suggested Topics

- 1. Brief overview of current status for both projects—KY
- 2. Description of current technical problems -KY
- 3. Discussion of possible solutions and ways R4 can help-- All

RE: KY TMDL Modeling Projects

From:

Danois, Gracy R.

Sent: To: Tuesday, July 19, 2016 9:47 AM Feingold, Amy; Blount, Tiana

Subject:

RE: Discussion on Floyd's Fork WASP model and assistance needed.

Here is my recap on this morning's call with Andrea:

Andrea believes that both they and Pete are working together to get this moving; Pete is talking to the stakeholders, Andrea and staff are working at the technical aspects of the TMDL production.

Joanne asked for confirmation that they intended to move forward with this. She asked for a timeline. KY is talking to stakeholders now, expecting to complete by year's end, while the tech work is happening.

Johnnie asked for clarification on the items that they will deliver: KY to deliver 1-4; item 5 to be done jointly. Total eta on the items is end of September, early October.

Gracy

Gracy R. Danois

Chief

Assessment, Listing and TMDL Section

US EPA Region 4 Water Protection Division 61 Forsyth St., SW Atlanta, GA 30303

(404)562-9119 (470) 259-9812 danois.gracy@epa.gov

From: Purify, Johnnie

Sent: Wednesday, July 13, 2016 5:42 PM

To: Wool, Tim < Wool. Tim@epa.gov>; Danois, Gracy R. < Danois. Gracy@epa.gov>; Blount, Tiana < Blount. Tiana@epa.gov> Cc: Fernandez, Glenn < Fernandez. Glenn@epa.gov>; Howell, Amanda < Howell. Amanda@epa.gov>; Benante, Joanne

<benante.joanne@epa.gov>

Subject: FW: Discussion on Floyd's Fork WASP model and assistance needed.

Hello Everyone,

Andrea reached out to me today about EPA supporting the development/update of the Floyds Fork model. I asked that she send me the information below to better understand what level of support KY would need. Before I respond, I would like to meet and discuss this request and assemble how we might want to respond.

I will send a meeting invite for an internal meeting to discuss next week.

Thanks.

JDP

From: Keatley, Andrea (EEC) [mailto:Andrea.Keatley@ky.gov]

Sent: Wednesday, July 13, 2016 5:14 PM **To:** Purify, Johnnie@epa.gov>

Subject: Discussion on Floyd's Fork WASP model and assistance needed.

Hi Johnnie,

We contacted Tetra Tech a while ago to see what the cost would be to improve the LSPC/WASP model output. We are concerned with the calibration/validation of the model. The estimate received from Tetra Tech was above what we would be able to fund and this also initiated concern expressed from EPA to us regarding contacting Tetra Tech. During those discussion, EPA stated that Tim Wool would be available to assists us with our concerns with the model. We developed some areas that we would like to have addressed and I am seeking out approval or confirmation that Tim will be available to us.

However before we begin any updates to the model, we would like to have agreed upon model goals for the calibration/validation of the model by both EPA and DOW. We have new point source information and we think it would improve the calibration and validation of the model.

Once our outcomes for the model are identified we would need assistance with:

- Updating facility information: We have collected outfall data from numerous smaller facilities. We would like
 to see that the default assumptions for facilities be changed to reflect this data. Additionally, a facility came
 on-line in 2008 that is not reflected in the current model; we would like to have this facility added.
- 2. Calibrate/Validate: We would like the model recalibrated and validated based upon changes in point source information with a goal of meeting the model calibration/validation targets identified and agreed upon by DOW and EPA.
- 3. Run scenarios: We are working on identifying a few new scenarios to be run. We also request that output only be examined at identified compliance points (one per impaired segment). We are working on identifying the compliance points and will submit the lats/longs.
- 4. Modify model report: We would need the model reports to be updated with new point source and calibration information.

We are currently working on:

- Confirming or updating our instream targets based on the outcome of our Bluegrass Nutrient study completed with 106 Supplemental funds.
- 2. Updating and confirming our compliance points.
- 3. Identifying the best scenarios to be run in the model.
- 4. Compiling and completing quality checks on the outfall data for the smaller facilities.
- 5. Identifying our goals for the model's quality objectives.

Andrea P. Keatley

Water Quality Branch Manager
Department for Environmental Protection
Division of Water
300 Sower Blvd, Third Floor
Frankfort, Kentucky 40601
(502) 782-6996
Andrea.keatley@ky.gov

http://water.ky.gov/waterquality/Pages/default.aspx

Subject:

Follow up on KY and FF Gracy's office

Location:

Start:

Thu 6/9/2016 10:30 AM

End:

Thu 6/9/2016 11:00 AM

Show Time As:

Tentative

Recurrence:

(none)

Meeting Status:

Not yet responded

Organizer:

Feingold, Amy

Required Attendees:

Blount, Tiana; Danois, Gracy R.

The purpose of this quick meeting is to pool our knowledge regarding what is going on with Floyds Fork and consider how we can move forward in a productive manner to achieve results and keep everyone on the same page.

RE: Call from Jeff Frank re: F...

Floyds Fork Call with KDOW Chris' Office

Subject: Location:

Start:

Mon 6/9/2014 1:00 PM

End:

Mon 6/9/2014 2:00 PM

Recurrence:

(none)

Meeting Status:

Accepted

Organizer:

Newbold, Amy

Required Attendees:

Feingold, Amy; Thomas, Chris; Akers, Paulette (EEC); Siewert, Amy (EEC)

We will call Paulette's office 502-564-3410

Subject: Location:

Floyds Fork Call with KDOW

15B

Start:

Tue 1/29/2013 3:00 PM

End:

Tue 1/29/2013 3:30 PM

Recurrence:

(none)

Meeting Status:

Accepted

Organizer:

Newbold, Amy

Conference call with KDOW to discuss the upcoming public and TAC meetings and the path forward from now until May.

Call in number 404-562-9931

Code: 629931

		2	

From:

Feingold, Amy

Sent:

Tuesday, August 23, 2016 9:08 AM

To:

Danois, Gracy R.; Purify, Johnnie; Benante, Joanne

Cc: Subject: Wool, Tim; Blount, Tiana FW: Floyds Fork TMDL

Attachments:

3B Watson.ppt

All -

I received a call yesterday from Mr. Frank inquiring the status of the FF TMDL. I let him know that KDOW was reviewing the impaired segments, compliance points and target, as well as looking into additional modeling. Mr. Frank discussed additional development in the watershed and the need to have the results of the TMDL for decision making.

Mr. Frank asked me to get Tim's input on the questions below, but I suggested he contact Tim directly. Mr. Frank said he wanted to push things to the next level and planned to get more media attention on the watershed. We can expect get some records requests or media inquiries.

Please let me know if you any questions.

Amy

From: Jeff Frank [mailto:jeffreyericfrank@gmail.com]

Sent: Monday, August 22, 2016 4:02 PM

To: Wool, Tim <Wool.Tim@epa.gov>; Feingold, Amy <Feingold.Amy@epa.gov>

Cc: Jeff Frank < jeffreyericfrank@gmail.com>

Subject: Floyds Fork TMDL

Tim,

Hi.

I'm a stakeholder in the Floyds Fork watershed and I have been reviewing the Floyds Fork TMDL work that has been completed to date. I am in discussions with Amy Feingold trying to get the nutrient TMDL for Floyds Fork back on track and implemented, and she suggested I post the following questions to you directly.

I am attaching a copy of the Tetra Tech Summary that I have and I am interested in your opinions as to the efficacy of this set of models, to wit:

- 1. Does it appear that the modeling work calls for significant nutrient reductions to achieve the modeled water quality standards?
- 2. Is the modeling results set as it is portrayed, i.e. doing a good or very good job of matching actual field conditions for flow and nutrients? (Slides 16,19,20)
- 3. Is this level of match normal for these types of modeling efforts? There are those that have called into question the quality of the models and their results...
- 4. Is this set of models those that are typically used to develop nutrient TMDL's? Are their other modeling/field tools that are required to develop this nutrient TMDL? There was extensive field work used to calibrate the models and their outputs...

Please reply at your first convenience as there are several significant development proposals and point source expansions and resulting nonpoint impacts that call for increasing nutrient loads on Floyds Fork.

Please refer to the attached powerpoint from Brian Watson at TetraTech... Slides 28-35 are what I'm using to make the case that nutrient loads need to be significantly reduced to hit the nutrient standards... (Question 1.)

I'd appreciate as candid and factual a set of answers as you can muster to the questions posted above,

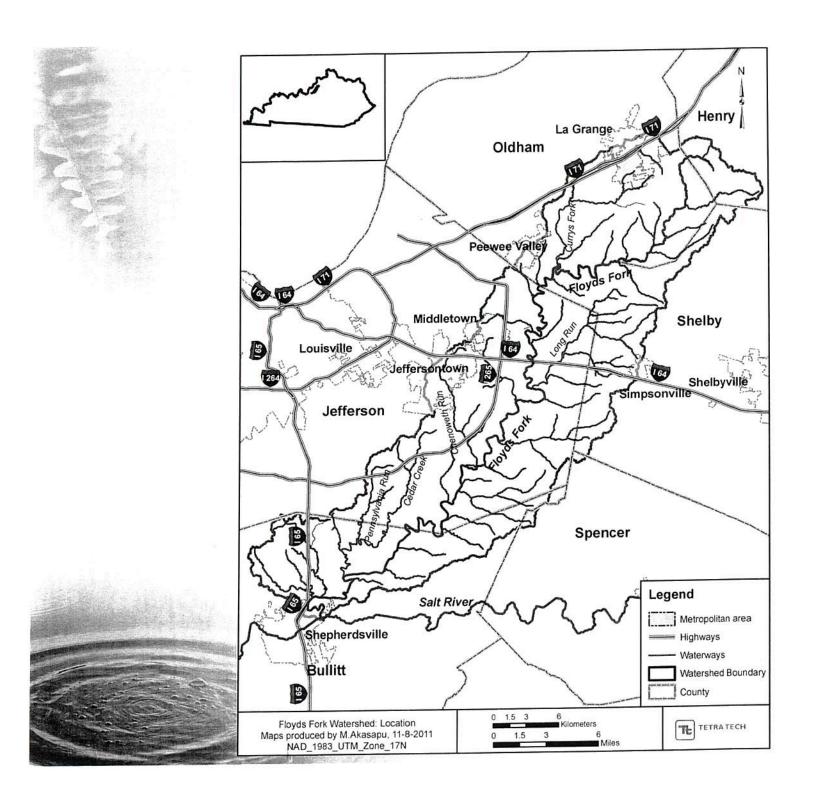
Thanks and feel free to call or email if you have questions....

Regards,

Jefff

Jeff Frank

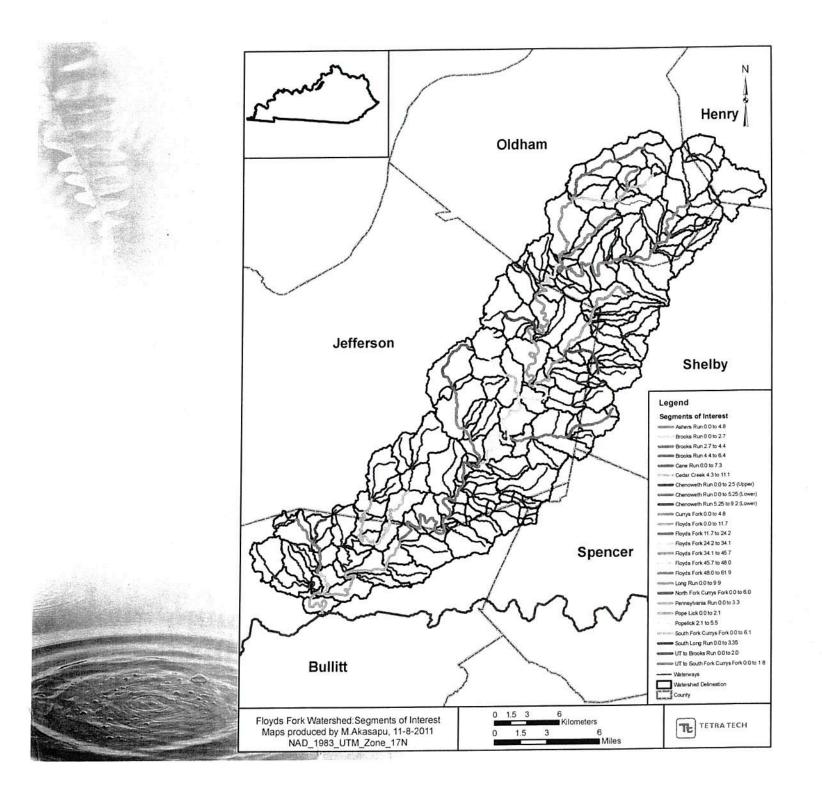
502.552.3920 - cell jeffreyericfrank@gmail.com


Working with Stakeholders in Developing Watershed and Water Quality Models: The Dos and Don'ts Well, at least some of them!

Presented by: Brian J. Watson, PE, PH

05 September 2013

27th Annual Alabama Water Resources Conference and Symposium


Orange Beach, Alabama

Background of Floyds Fork TMDL

- Segments of the Floyds Fork Watershed are on Kentucky's 303(d) list for: Nutrients (organic enrichment), Dissolved Oxygen & Pathogens
- □ At KDOW's Request, EPA Started to Develop the 1st Nutrient TMDL in 2007
- EPA priorities shifted and work was delayed
- □ EPA Receives Notice of Intent in 2011
 - □ EPA issues RFP for TMDL Support
 - Contract awarded to Tetra Tech for the development of watershed and water quality models to be used in a TMDL determination
 - □ Period of Performance: May 2011 November 15, 2012
 - Modified during the process
- Immediately initiated a Stakeholder Group
 - Contract initially called for 6 public outreach meetings.

Stakeholder Process

- □ Lessons Learned
- □ Stakeholders are Valuable Resources
 - □ Site Specific Knowledge
 - Engaged in the Process
 - □ Have Individual Concerns
- Regulatory Decision Making Process
 - Proposal
 - □ Final
- EPA is using a stakeholder process in the development of the Floyds Fork TMDL
 - Status of the Model Development is presented meetings
 - Models have been made available for outside technical review
 - Have encouraged involvement

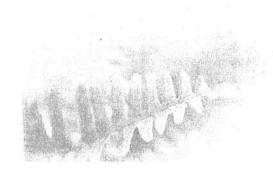
Technical Advisory Committee

- Purpose of the TAC
 - Should Focus on Technical Issues, not implementation
 - □ Build a consensus in the development of the models
 - Technical review of reports and models
 - Provide guidance in model assumptions
 - Provide guidance on sensitivity/uncertainty scenarios

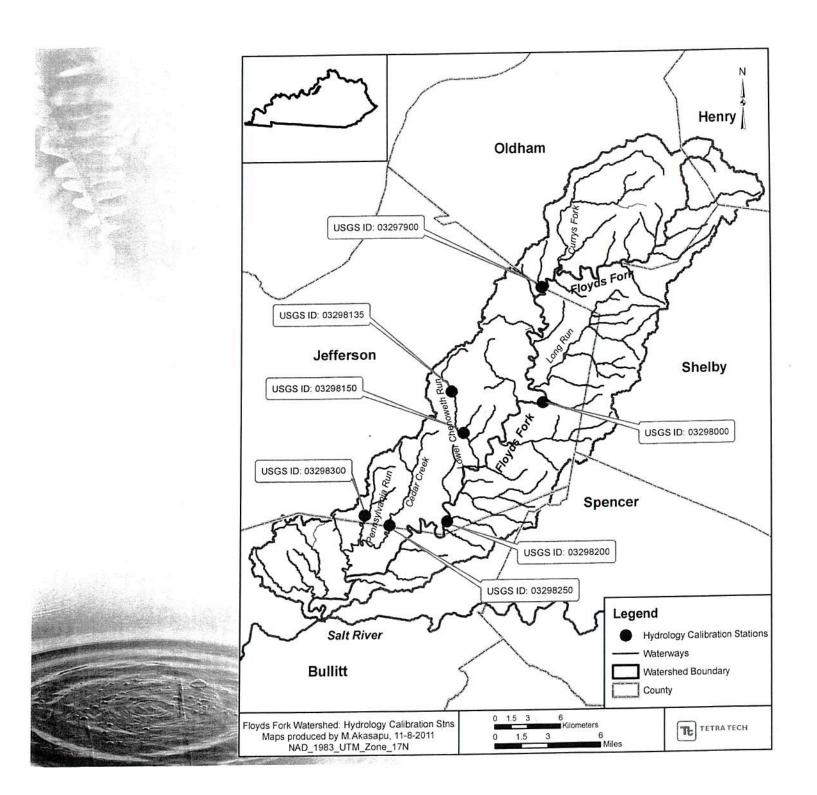
Timeline and Scheduling of Meetings

Floyds Fork TMDL Milestones

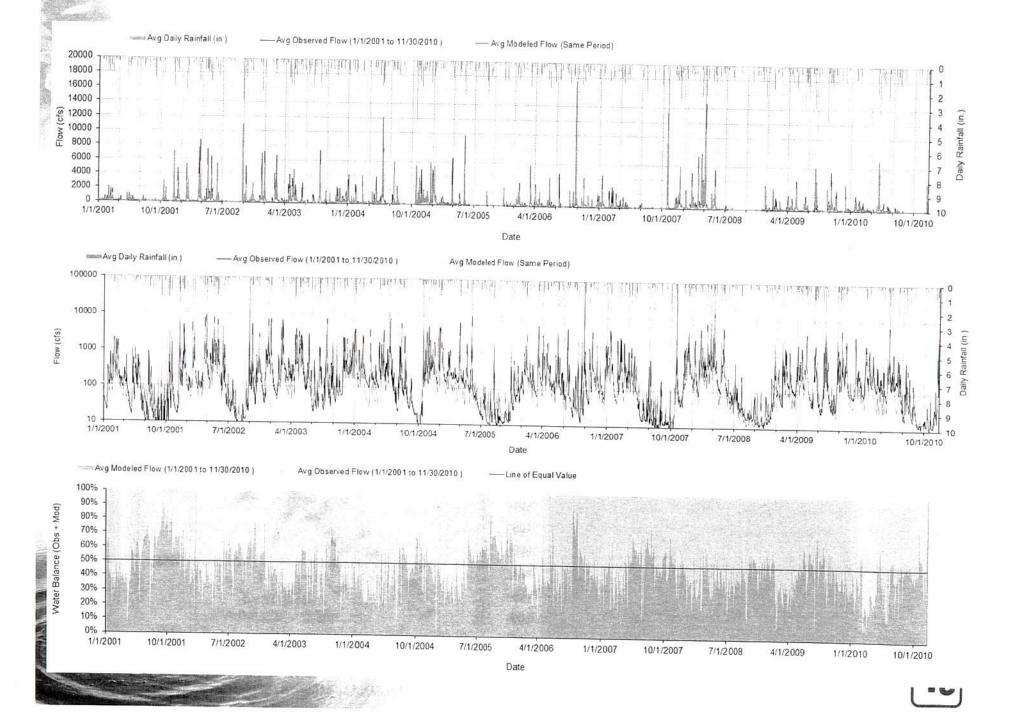
- June 13, 2011 Award of Support Contract to Tt
- August 30, 2011 Stakeholder Meeting #1
- November 15, 2011 Stakeholder Meeting #2
- December 30, 2011 Initial Release of Watershed Modeling Report (REV0)
- January 31, 2012 Watershed Modeling Report (REV1)
- February 21, 2012 Stakeholder Meeting #3
- May 4, 2012 Watershed Modeling Report (REV2)
- May 15, 2012 Initial Release of Instream Modeling Report (REV0)
- July 13, 2012 Watershed Modeling Report (REV3)
- July 24, 2012 Stakeholder Meeting #4
- July 26, 2012 Technical Advisory Committee Meeting #1

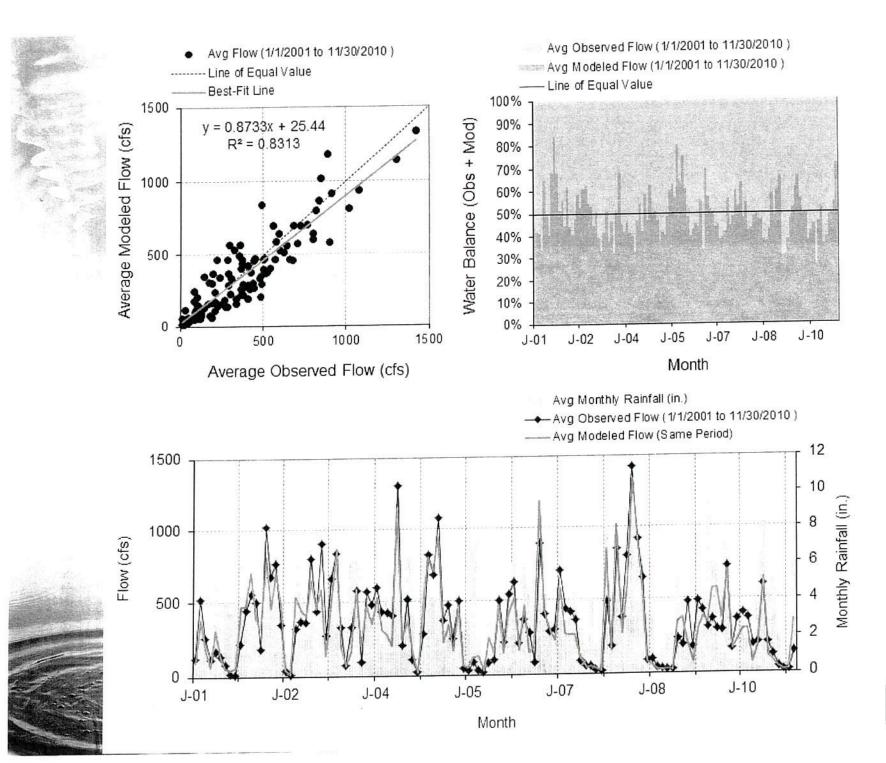

Floyds Fork TMDL Milestones

- August 30, 2012 Watershed Modeling Report (REV4) and Instream Modeling Report (REV1)
- September 6, 2012 Technical Advisory Committee Meeting #2
- November 28, 2012 Technical Advisory Committee Meeting #3
- February 8, 2013 Watershed Modeling Report (REV5)
- February 20, 2013 Technical Advisory Committee Meeting #4
- March 15, 2013 Instream Modeling Report (REV2)
- March 27, 2013 Technical Advisory Committee Meeting #5
- April 24, 2013 Technical Advisory Committee Meeting #6
- May 14, 2013 Watershed Modeling Report (REV6) and Instream Modeling Report (REV3)
- May 14, 2013 End of Tt Support Contract



Presentation of Modeling Results to both the Technical and Non-Technical



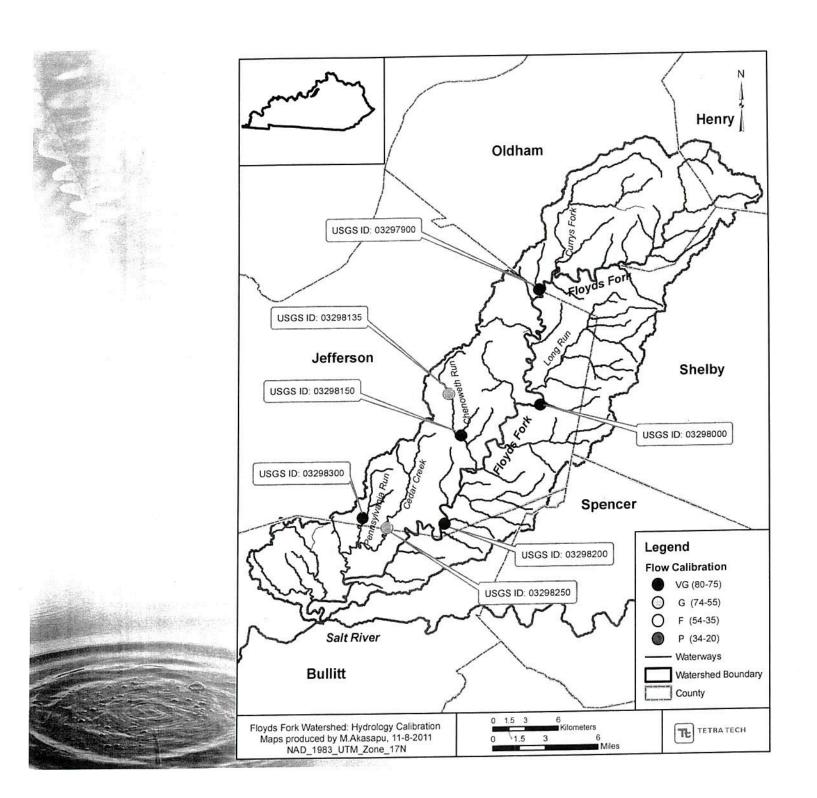

Hydrology Calibration

- Calibration period
 - □ January 1, 2001 through December 31, 2010
- □ 7 USGS Stations
 - 3 Main Stem
 - 4 Tributaries
- □ 70+ sets of plots/figures!
- Quantitative Calibration
 - Miscellaneous Plots
 - Summarized by Statistics
- Qualitative Calibration
 - Analyzed Statistics
 - Developed Qualitative Calibration

LSPC Simulated Flow

REACH OUTFLOW FROM SUBBASIN 606

9.91-Year Analysis Period: 1/1/2001 - 11/30/2010 Flow volumes are (inches/year) for upstream drainage area

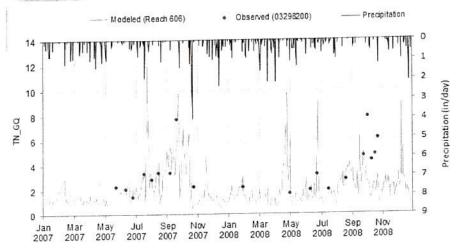

Observed Flow Gage

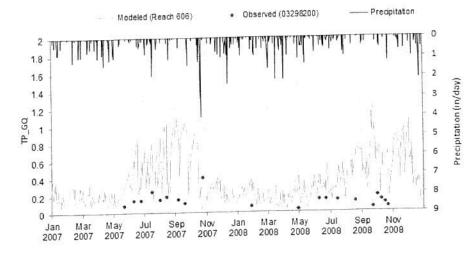
USGS 03298200 FLOYDS FORK NEAR MT WASHINGTON, KY

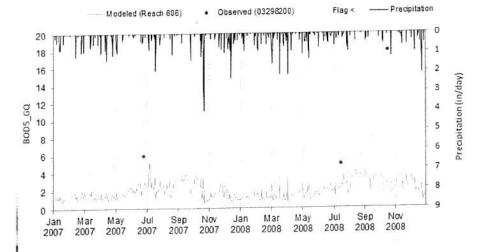
Hydrologic Unit Code: 5140102

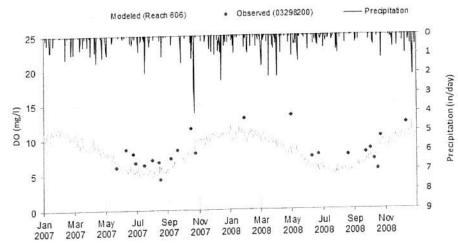
Latitude: 38.08534216 Longitude: -85.5549556 Drainage Area (sq-mi): 213

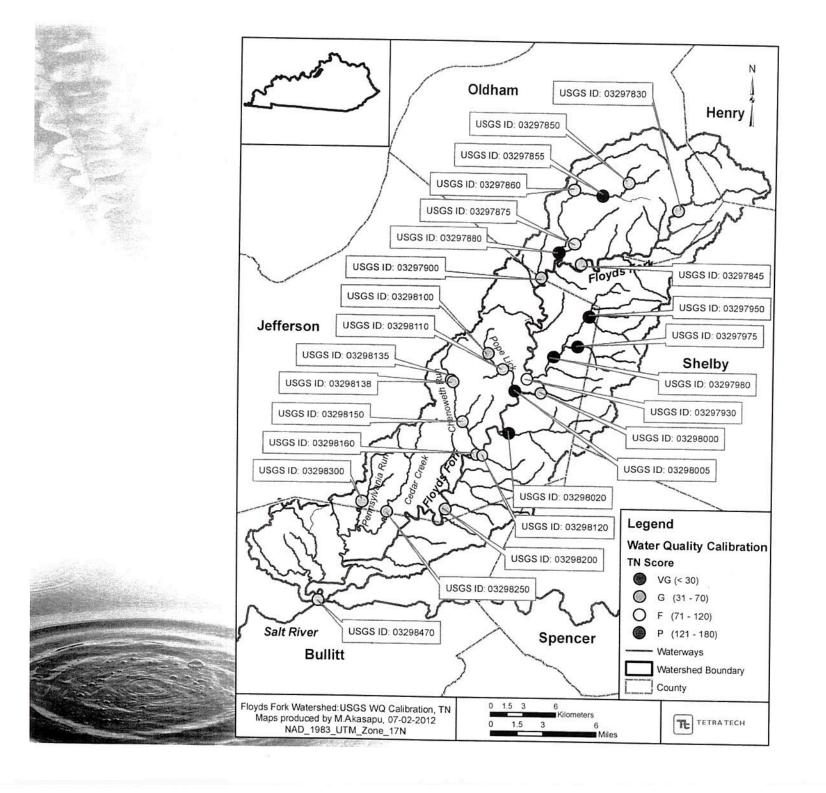
Total Simulated In-stream Flow:	21.34	Total Observed In-stream Flo	W.	22.53
Total of simulated highest 10% flows:	12.82	T-L-L-(O)		
Total of Simulated lowest 50% flows:	Activities and the contract of	Total of Observed highest 10% flows:		13.49
Total of Officialed lowest 50 % 10Ws.	1.53	Total of Observed Lowest 50°	% flows:	1.57
Simulated Summer Flow Volume (months 7-9):	3.08	Observed Summer Flow Volu	umo /7 0):	
Simulated Fall Flow Volume (months 10-12):	6.16	Observed Fall Flow Volume (10 10).	2.62
Simulated Winter Flow Volume (months 1-3):	6.18	Observed Winter Flow Volume	10-12).	5.44
Simulated Spring Flow Volume (months 4-6):	5.92	Observed Spring Flow Volum	e (1-3).	7.87
***************************************		Observed Spring Flow Volum	e (4-6):	6.60
Total Simulated Storm Volume:	12.50	Total Observed Storm Volume		13.71
Simulated Summer Storm Volume (7-9):	2.02	Observed Summer Storm Volume (7-9):		1.92
Errors (Simulated-Observed)	Error Statistics	Recommended Criteria	1. 01.	1.32
Error in total volume:	-5.27	10		-
Error in 50% lowest flows:	-2.71	10		
Error in 10% highest flows:	-4.99	15		
Seasonal volume error - Summer:	17.41	30		
Seasonal volume error - Fall:	13.15	30	none de la composition della c	
Seasonal volume error - Winter:	-21.42	30		
Seasonal volume error - Spring:	-10.23	30		
Error in storm volumes:	-8.88	20		***************************************
Error in summer storm volumes:	4.98	50	continue continue de la continue de	
Nash-Sutcliffe Coefficient of Efficiency, E:	0.686	Model accuracy increases		
Baseline adjusted coefficient (Garrick), E':	0.545	as E or E' approaches 1.0		

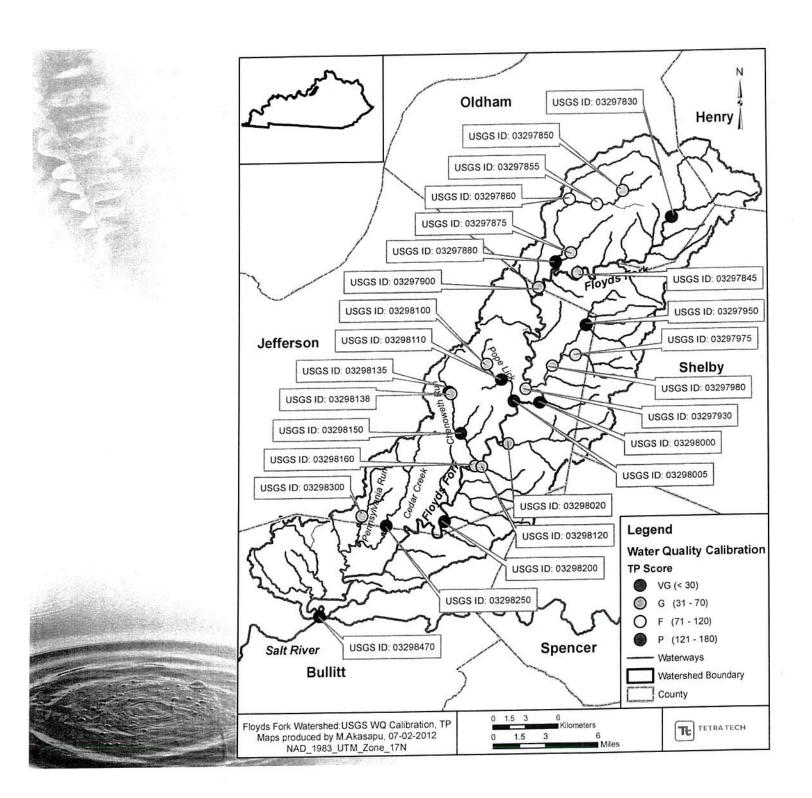





Water Quality Calibration


- Calibration period
 - ☐ January 1, 2001 through December 31, 2010
- □ 26 USGS Stations
 - 8 Main Stem
 - □ 18 Tributaries
- □ 5 MSD Stations
 - □ 3 Main Stem
 - 2 Tributaries
- □ 320+ sets of plots/figures
- Quantitative Calibration
- Qualitative Calibration





Nutrient Targets

Proposed Nutrient Targets Developed by KDOW

Size category	TN target ^c (mg/L)	TN max ^D (mg/L)	TP target ^C (mg/L)	TP max ^D (mg/L)
Headwater (<5 sq mi) ^A	0.7	1.0	0.09	0.12
Wadeable (5-100 sq mi) ^B	1.1	1.6	0.15	0.25
Transitional/Boatable (>100 sq mi) ^B	2.2	2.4	0.20	0.66

- A Annual Geometric Mean
- **B** Growing Season (April through October) Geometric Mean
- C Target may not be exceeded more than 1 time in 3 years
- D Maximum Geometric Mean

Floyds Fork TMDL Milestones

- June 13, 2011 Award of Support Contract to Tt
- August 30, 2011 Stakeholder Meeting #1
- October 26, 2011 KDOW submits Nutrient Targets to EPA/Tt
- November 15, 2011 Stakeholder Meeting #2
- December 30, 2011 Initial Release of Watershed Modeling Report (REV0)
- January 31, 2012 Watershed Modeling Report (REV1)
- February 21, 2012 Stakeholder Meeting #3 (1st Presented to Stakeholders)
- May 4, 2012 Watershed Modeling Report (REV2)
- May 15, 2012 Initial Release of Instream Modeling Report (REV0)
- July 13, 2012 Watershed Modeling Report (REV3)
- July 24, 2012 Stakeholder Meeting #4
- July 26, 2012 Technical Advisory Committee Meeting #1

Floyds Fork TMDL Milestones

- August 30, 2012 Watershed Modeling Report (REV4) and Instream Modeling Report (REV1)
- September 6, 2012 Technical Advisory Committee Meeting #2
- November 28, 2012 Technical Advisory Committee Meeting #3 (2nd times mentioned to Stakeholders. Mentioned each subsequent meeting)
- February 8, 2013 Watershed Modeling Report (REV5)
- February 20, 2013 Technical Advisory Committee Meeting #4
- March 15, 2013 Instream Modeling Report (REV2)
- March 27, 2013 Technical Advisory Committee Meeting #5
- April 24, 2013 Technical Advisory Committee Meeting #6
- May 14, 2013 Watershed Modeling Report (REV6) and Instream Modeling Report (REV3)
- May 14, 2013 End of Tt Support Contract
- May 2013 to Present Still discussing Nutrient Targets!!

Summary

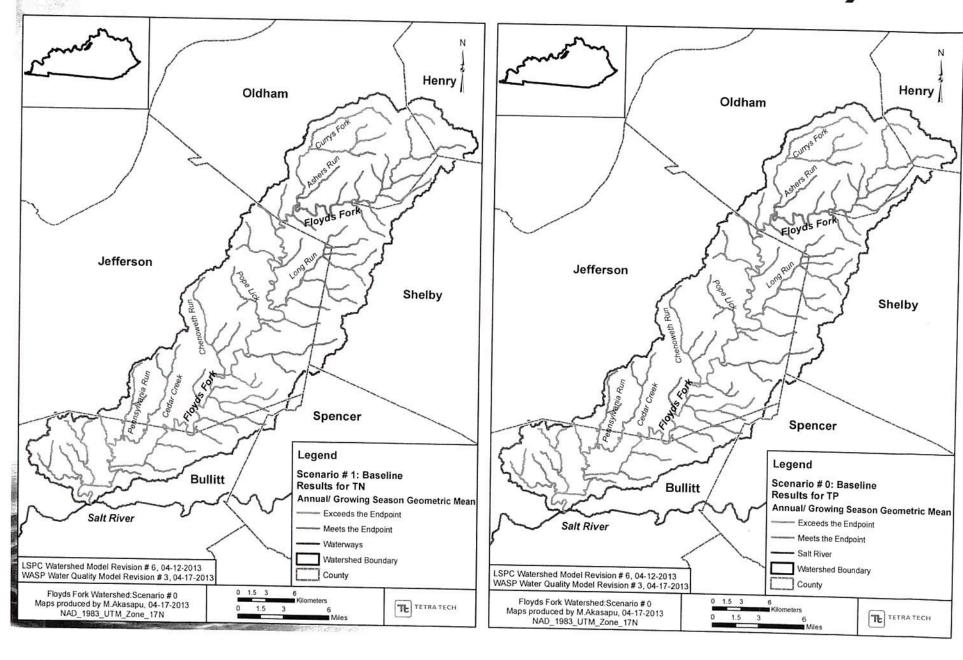
- Timelines and Scheduling Meetings
 - Do: Get TAC involved early
 - Don't: Vet technical issues to general Stakeholders
- Presentation of Technical Results
 - Do: Present results in a easy to read fashion
 - Don't: Present numbers/graphs and allow interpretation
- Nutrient Targets
 - Do: Educate Stakeholders about Targets and get buy-in
 - Don't: Glaze over the obvious

Questions?

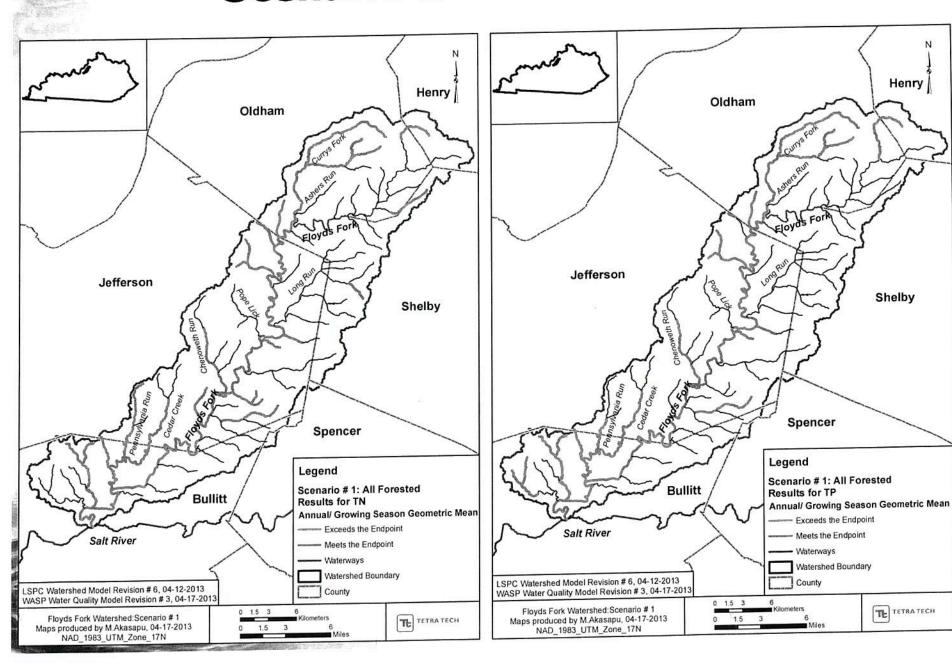
Brian J. Watson, PE, PH
Tetra Tech
Director, Water Resources Group
2110 Powers Ferry Road
Suite 202
Atlanta, Georgia 30339
770-738-6030
brian.watson@tetratech.com

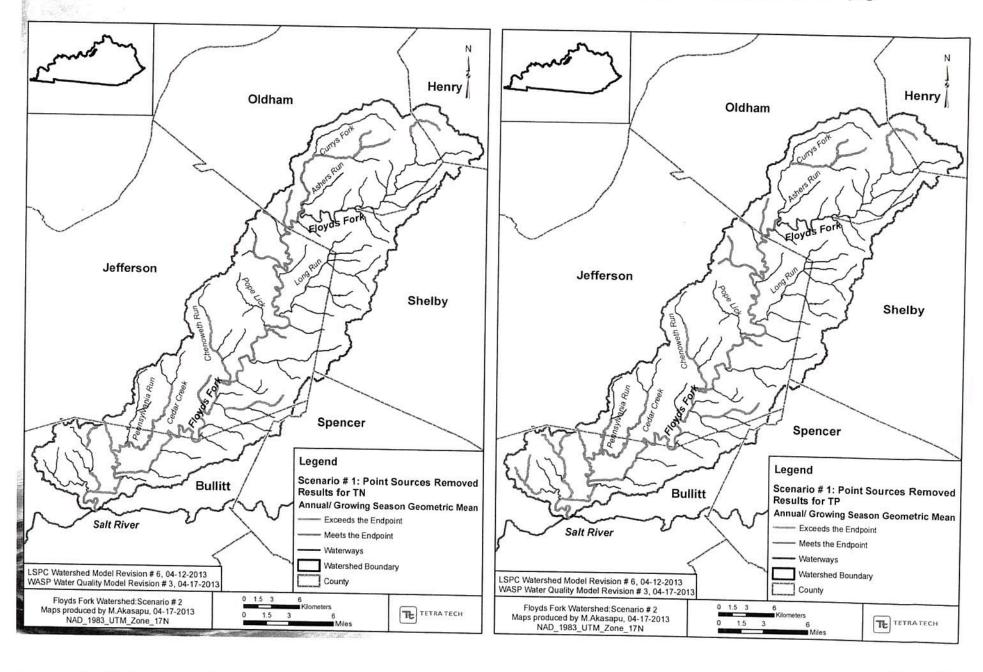
Madhu Akasapu-Smith
Tetra Tech
Environmental Engineer
2110 Powers Ferry Road
Suite 202
Atlanta, Georgia 30339
770-738-6044
madhu.akasapu@tetratech.com

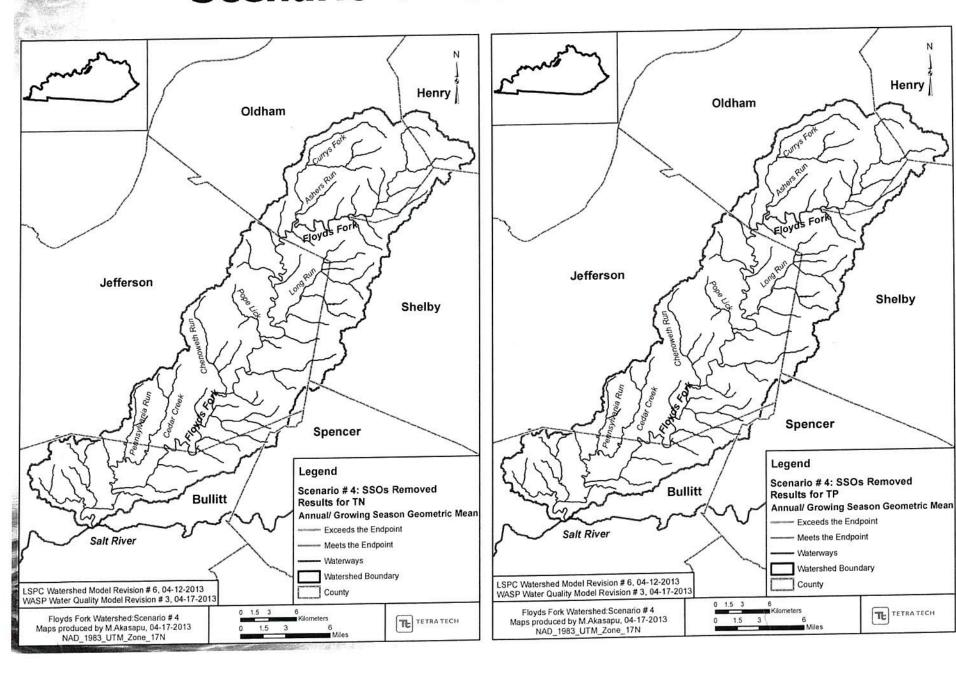
Development of Scenario List Presentation of Scenarios and

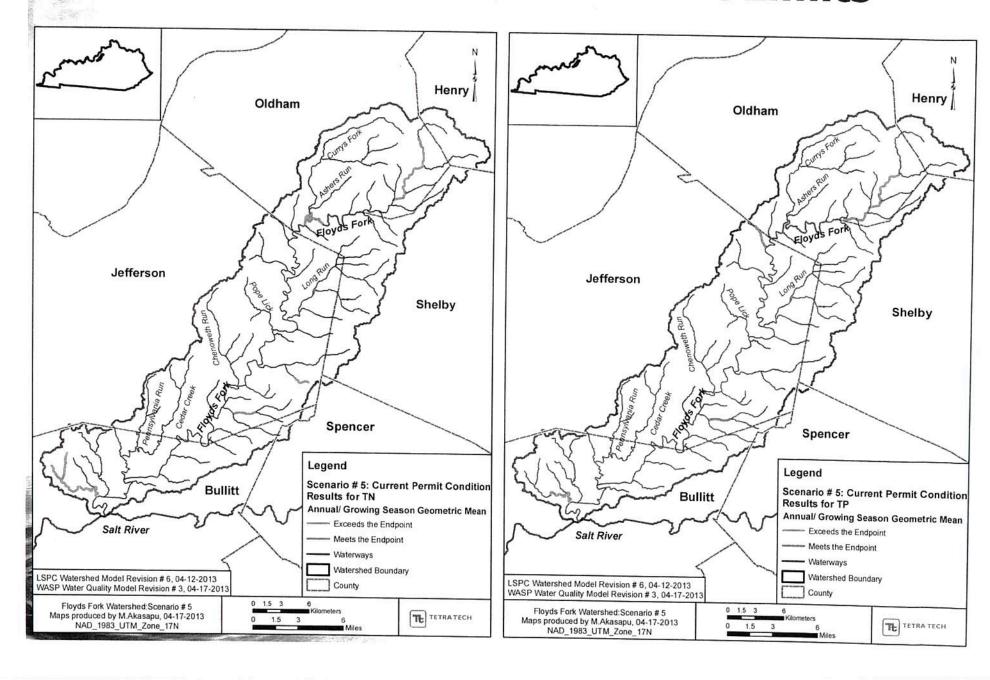


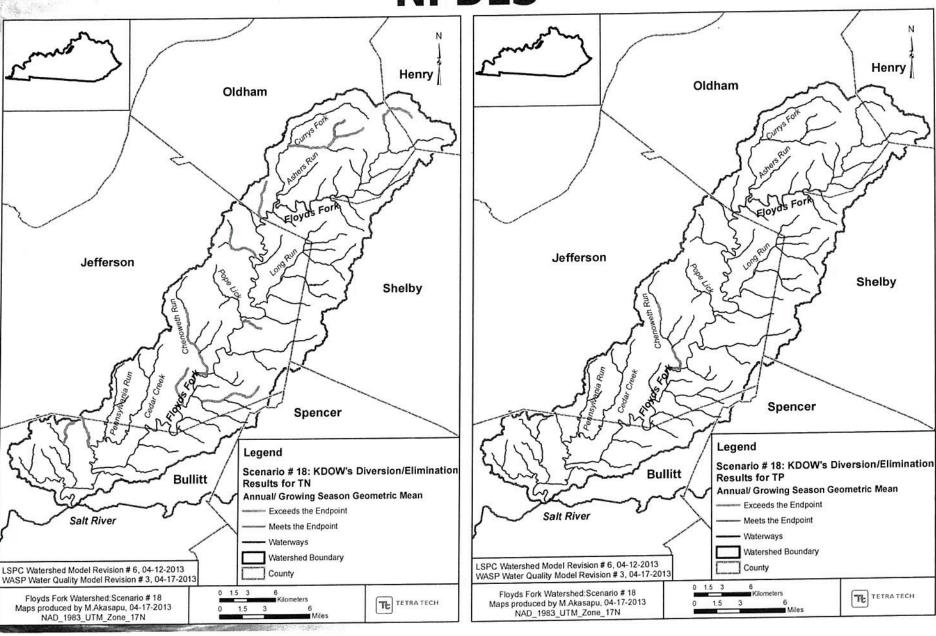
Scenarios Suggested and Evaluated


Scenario Number	Scenario Name				
0	Baseline (Calibrated Model)				
1	All Forested				
2	Point Sources Removed				
3	Septics Removed				
4	SSOs Removed				
5	Current Permit Condition for the NPDES facilities				
6	Agricultural to Low Intensity Residential Land Use Change				
7	Increase in Agricultural Animals by 50%				
8	Direct Discharge of Septic Systems				
9	Directing Septic Load to NPDES facilities				
10	Removal of Septic Systems from Small Watersheds				
11	Increase of Urban Land Use by 25%				
12	Removal of all NPDES facilities				
13	Removal of all NPDES facilities except Lagrange				
14	Half the Current Permit Limits				
15	Specified Permit Limits				
16	Future Diversion/Elimination of the NPDES facilities				
17	Septic Decay Rate decreased from 60 to 6 days				
18	KDOW's Diversion/Elimination of the NPDES facilities				
19	50 foot Buffer around the streams				


Scenario 0 - Baseline (Calibration)


Scenario 1 – All Forested


Scenario 2 – Point Sources Removed


Scenario 4 – SSOs Removed

Scenario 5 – Current Permit Limits


Scenario 18 – KDOW Div/Elim of NPDES

		To	tal Nitrogen		1		in the last	
Scenario _		Annual/ Growing Season GM			Maximum GM			
Number	Scenario Description	Size Category			Size Category			
		Headwater	Wadeable	Boatable	Headwater	Wadeable	Boatable	
0	Baseline	•	•	•	•		•	
1	All Forested	•	•	•	•	•	•	
2	Point Sources Removed	•	•	•	•	•	•	
4	SSOs Removed	•	•	•	•	•	•	
5	Current Permit Condition for the NPDES facilities	•	•		•	•	•	
18	KDOW's Diversion/Elimination of the NPDES fcailities	•	•	•	•	•	•	

ALC: SAN		Tota	l Phosphoru	5	111111	· · · · · · · · · · · · · · · · · · ·	100 8 9 11
Scenario		Annual/ Growing Season GM Size Category			Maximum GM Size Category		
Number	Scenario Description						
		Headwater	Wadeable	Boatable	Headwater	Wadeable	Boatable
0	Baseline	•	•	•		•	•
1	All Forested	•	•		•	•	•
2	Point Sources Removed	•	•		•	•	•
4	SSOs Removed	•	•	•	•	•	•
5	Current Permit Condition for the NPDES facilities	•	•	•	•	•	0
18	KDOW's Diversion/Elimination of the NPDES fcailities	•	•	•	•	•	•

Summary

- □ Timelines and Scheduling Meetings
 - Do: Get TAC involved early
 - Don't: Vet technical issues to general Stakeholders
- Presentation of Technical Results
 - Do: Present results in a easy to read fashion
 - Don't: Present numbers/graphs and allow interpretation
- Nutrient Targets
 - Do: Educate Stakeholders about Targets and get buy-in
 - Don't: Glaze over the obvious
- □ Scenarios
 - Do: Assist Stakeholders in determining "good" scenarios
 - Don't: Present numbers/reductions right away

Pearce, Jennifer

From:

Sent: To:

Feingold, Amy Wednesday, June 15, 2016 11:01 AM Danois, Gracy R. Accepted: Floyds Fork

Subject:

	at the second of	

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

APR 1 6 2013

Teena Halbig 6505 Echo Trail Louisville, Kentucky 40299-5103

Re:

Kentucky Department of Environmental Protection Federally Approved National Pollutant

Discharge Elimination System (NPDES) Program

Dear Ms. Halbig:

In a letter dated March 23, 2010, you requested that the U.S. Environmental Protection Agency withdraw its approval of the state of Kentucky's NPDES permit program. (Enclosure 1). You repeated this request in an e-mail dated August 17, 2010 (Enclosure 2). Your letter and e-mail assert that approval of the state's program should be withdrawn on grounds related to (1) the Louisville/Jefferson County Municipal Sewer District (MSD), (2) water quality in Floyds Fork Creek, and (3) alleged inadequacies in enforcement and stormwater management. First, you allege that the Louisville/Jefferson County MSD did not follow public participation requirements under 40 C.F.R. § 35.3140(b)(4)(iii). You also assert the Floyds Fork Environmental Association (FFEA) was excluded from Project Watershed Initiative Now (WIN). You have requested consideration of the Floyds Fork Development Review Overlay. You have also requested that a total maximum daily load (TMDL) for pathogens be established for Floyds Fork Creek to protect the public. In addition, you have criticized the Kentucky Division of Water (KDOW) for "turning stormwater over to MSD and the other co-permittees who also have a deplorable record for enforcement," and for failing to ensure "that MSD has adequately trained site inspectors." Your e-mail also asserts that Kentucky's NPDES authority should be removed because you were not provided notice of certain public hearings. After reviewing the issues identified in your letter and e-mail, we have concluded that none provides a basis for initiating proceedings to withdraw the Kentucky NPDES program.

The NPDES regulations at 40 C.F.R. § 123.63 set forth the circumstances in which the EPA may withdraw a state NPDES permit program. In relevant part, 40 C.F.R. § 123.63 states "the Administrator may withdraw program approval when a state program no longer complies with the requirements of this part, and the state fails to take corrective action." As explained below, the EPA has found that the issues raised in the petition do not meet the criteria set forth in 40 C.F.R. 123.63. As a result, the EPA is denying your request to withdraw Kentucky's NPDES permit program. Additional information is provided below with respect to each issue raised in the petition.

Your letter begins by asserting that the Louisville/Jefferson County MSD did not follow public participation requirements under 40 C.F.R. § 35.3140(b)(4)(iii) for a public hearing held on March 16, 2010 (the purpose of which was not specified in your petition). 40 C.F.R. § 35.3140(b)(4) describes the public notice and participation requirements for a "NEPA-like State environmental review process." Pursuant to 40 C.F.R. § 123.25(a)(24)-(35), states with approved NPDES permit programs must have public participation opportunities and procedures that comply with specified provisions found in 40 C.F.R. Part 124. 40 C.F.R. § 123.63(a)(2)(iii) lists the failure to comply with the public participation requirements of Part 123 as a viable criterion for requesting withdrawal of an approved state program.

However, this is separate and apart from the public participation requirements that apply to the National Environmental Policy Act (NEPA)-like state environmental review process for projects receiving funding through the Clean Water Act State Revolving Fund. Non-compliance with public participation requirements for a NEPA-like state environmental review process under section 35.3140(b)(4) is not one of the criteria set forth in 40 C.F.R. §123.63. Further, we have determined that MSD does not have any projects with funding from the State Revolving Fund, and these requirements are therefore not applicable. Accordingly, these allegations do not constitute a basis for NPDES program withdrawal under 40 C.F.R. § 123.63.

The second issue you raise in your petition regards the alleged exclusion of FFEA from participation in the Project WIN Wet Weather Team. On August 12, 2005, Louisville/Jefferson County MSD signed a consent decree with the U.S. Department of Justice, the EPA and the Kentucky Department for Environmental Protection (KDEP) resolving violations of the CWA stemming from untreated overflows from Louisville's combined and separate sanitary sewer systems. Under the consent decree, MSD agreed to produce a plan to control sewer system overflows and improve water quality in the Louisville area. The 2005 consent decree required the Louisville/Jefferson County MSD to create a stakeholder group, referred to as the Wet Weather Team, to be formed with the purpose of assisting and advising MSD during the planning process. Because the responsibility to establish the Wet Weather Team under the Consent Decree rests with MSD and not with KDEP, any allegations of failure to meet the terms of the Consent Decree regarding the make-up of the Wet Weather Team are not directly related to KDEP's administration of the NPDES program. Further, we understand that while the Wet Weather Team established under the Consent Decree may have been prematurely disbanded by MSD, it was later reinstated and remains active. Therefore, these allegations are not a basis under 40 C.F.R. § 123.63 for the EPA to consider commencing withdrawal proceedings.

Third, your petition requests that the EPA consider the Floyds Fork Development Review Overlay. The stated purpose of the Floyds Fork Development Review Overlay is to establish "a second level of development standards in addition to those specified by the underlying zoning district." An issue relating to local zoning regulations does not constitute a basis for NPDES program withdrawal. Your letter also states that because the state and the Louisville/Jefferson County MSD have allowed poor water quality to occur, a TMDL for pathogens needs to be established for Floyds Fork Creek. The TMDL development and approval process is not part of the authorized NPDES permit program. Therefore, the allegation of a need for a TMDL does not constitute a basis for NPDES program withdrawal under 40 C.F.R. § 123.63.

Your August 17, 2010, email alleges that KDOW has turned over responsibilities to control stormwater to the Louisville/Jefferson County MSD and its co-permittees, and that they have a deplorable record for enforcement or collecting fines and for not following through with problem cases. Under the NPDES program, certain stormwater discharges, including discharges from certain municipal separate storm sewer systems (MS4s), stormwater discharges associated with industrial activity and stormwater discharges from construction sites that disturb one or more acres, are required to be authorized by an NPDES permit. These permits are enforceable by the state, the EPA or through a citizen suit. KDOW has issued permits for stormwater discharges associated with industrial activity and stormwater discharges from construction sites that disturb one or more acres, as well as MS4 permits. In particular, KDOW has issued a permit for discharges from the MS4 operated by the Louisville/Jefferson County MSD.

¹ We note that Kentucky is presently working on development of a pathogens TMDL for Floyds Fork.

MS4 permits typically impose obligations for the permittee to implement stormwater management programs, which are required to reduce pollutant discharges from the MS4 to the maximum extent practicable. Under its MS4 permit, the Louisville/Jefferson County MSD is required to implement a stormwater management program that includes controlling pollutants in construction site runoff to its MS4. In imposing such permit requirements, the State does not "turn over" its own direct regulation of such stormwater. The operator of a construction site that disturbs one or more acres that discharges stormwater to the MSD MS4 is still required to obtain NPDES permit coverage for its discharge and comply with requirements in the NPDES permit. Thus, stormwater discharges from construction sites of one or more acres discharging to MSD's MS4 are regulated by both the NPDES permitting authority (KDOW) and are subject to controls imposed by the Louisville/Jefferson County MSD as required by its own MS4 permit. To the extent that an MS4 permittee fails to meet its MS4 permit obligations, it is subject to enforcement by the state, the EPA, or citizen suits. Therefore the appropriate remedy for an MS4 permitee in non-compliance with its permit is not to withdraw Kentucky's NPDES authorization under 40 C.F.R. § 123.63, but rather, would be an enforcement action brought by either the State, the EPA or a citizen.

Your email also asserts that Kentucky's NPDES authority should be removed because of KDOWs failure to provide notice to you of its public hearings. Your email indicates that KDOW had advised you that you had been added to the public notice list and that your removal was "inadvertent." We understand that this would be frustrating for you, as you should not have to repeatedly request to be added to a public notice list. However, it appears that this problem has been solved and we do not find that this issue warrants initiation of NPDES program withdrawal proceedings.

In conclusion, the EPA denies your request to exercise its discretion to initiate proceedings to withdraw Kentucky's NPDES program, because the alleged grounds asserted do not meet the criteria necessary for NPDES program withdrawal under 40 C.F.R. § 123.63.

Sincerely,

Gwendolyn Keyes Fleming

Divended you Kinst Coming

Regional Administrator

Enclosures (2)

FLOYDS FORK ENVIRONMENTAL ASSOCIATION

Floyds Fork Environmental Association 6505 Echo Trail Louisville, KY 40299-5103 (502) 267-6883 teenahal@aol.com

2010 APR 19 A 11

US EPA
Water Enforcement Branch
Mr. Sean Ireland
61 Forsyth Street
Atlanta, Georgia 30303

1:37

3-23-10

Dear Mr. Ireland,

MSD held what was termed a "public meeting" but no public input was to be considered by MSD on March 16 from 4 -7 P. M. Public hearings or meetings must be provided for any action other than those found to have little or no environmental effect (reference 40 C.F.R. 35.3140 (b)(4)(iii).

There were 3 foam boards and alternate 3 would be the MSD presented plan "as is" to USEPA. When I asked Brian Bingham the purpose of the meeting, he said it was a public meeting. I said, "A public meeting but no public input was to be considered—only that MSD would present the Alternate 3 plan to USEPA". Earlier, Mark Johnson was asked by Jeff Frank when the plan would be presented and who to contact at EPA. While he didn't respond readily, Dave Schaftlein, MSD engineer, said "Cesar Zapata and Sean Ireland" (and he spelled Sean) while Jeff wrote this down.

MSD is adamant that public input will not be considered. MSD will only present the MSD planned Alternate 3 without any changes post the meeting held.

Since Project WIN materials were laid on a tabletop, I am reminded that FFEA was excluded from any participation whatsoever in Project WIN (Watershed Initiative Now). The wet-weather team did not include FFEA that has been in existence since 1991 and is a well-known group focused on Floyds Fork Creek and the Salt River Basin.

While more public involvement is needed and necessary, MSD continually closes the door to the public. A prime example is in HB221 – it took a lot of work and effort to crack the door but it is still not open and lacks enough transparency. There are not meetings on the front end – only on the MSD 'done' end.

Overall planning is not evident since there is no coordination with the Floyds Fork Development Review Overlay (attachment) or any of the many organizations (private and government) procuring conservation easements, lack of community planning, etc.

Mark Johnson, MSD Chief District engineer, insisted at the meeting 3-16-10 that MSD will put sewers (I was told sewer lines could be 42" up to 60" for the lines mapped) where hundreds of acres of these conservation easements (but the large acreages will never be developed for housing) and easements are being worked on actively by these land trusts. This is a major effort that is receiving NATIONAL attention for this 27 miles of nearly 4000 acres that has been obtained with a quest to get 10,000 acres in the Floyds Fork area – acreage that can be preserved, in Silva culture (at least 2 are in conservation easements along Floyds Fork Creek), develop as 2 state of the art parks (one contiguous of 1100 acres0, healthy hiking & biking & horse trails, retain as farmland for animals and crops, etc. There is a winery of hundreds of acres in the watershed. As a past Metro Parks Commissioner (for 6 years), I know there are 3 Metro Government parks of several hundred acres along Floyds Fork Creek (one is not adjacent but in the watershed).

I can only let your agency know that in 1993, the federal government (Superfund) did take into account the planning that Jefferson County was just putting in place as the Floyds Fork DRO. We were also effective in asking MSD (under Director Gordon Garner) to not put the Floyds Fork WWTP on the Osterriter property; MSD settled on the William F. Miles Property to build it.

Another item of great importance: Primacy needs to revert back to USEPA since the Kentucky Division of Water and MSD have a known record of poor water quality in our state. Primacy over water needs to be taken back from Kentucky as soon as possible – please see that the appropriate person/branch or Administrator Lisa Jackson at EPA receives this request. Different leadership is necessary. Example: A pathogens TMDL the USEPA has in consideration needs to be placed on Floyds Fork Creek to protect the public because KY and Local Government/MSD have allowed this to occur.

Three items: 1. FFEA regrets seeing such a 'meeting' where public input is not considered. 2. FFEA was excluded from participation in Project WIN. 3. Please consider the planning of land conservation and the existing Floyds Fork DRO that was passed by the planning Commission, 14 small cities, and Fiscal Court in 1993 after 2 public hearing with approximately 600 attending plus a 60 member task force (myself and other FFEA members served with developers and others) for one and a half years to get this additional layer (overlay) of planning. And 4. Please take primacy over KY waters.

Are such meetings under 200KAR 17.050 6(1)(d)? Under the Clean Water Act, Congress explicitly provided that, "public participation in the development, revision, and enforcement of any regulation, standard, effluent limitation, plan, or program established by the Administrator or any State under this chapter shall be provided for, encouraged, and assisted by the Administrator and the States" (reference 33 U.S.C.A. 1251(e). Please

take back the NPDES/KPDES State-based permitting {reference 33 U.S.C.A. 1251 (e) and 33 U.S.C.A. 1342(b)}.

Thank you for your consideration of these comments.

Sincerely,

Cena Halliy
Teena Hallig
Vice President

Floyds Fork Environmental Association

This message is intended exclusively for the individual (s) of entity(s) to which it is addressed. This communication may contain information that is proprietary, privileged, or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately by email and delete all copies of the message.

---- Forwarded by Sean Ireland/R4/USEPA/US on 08/17/2010 11:35 AM ----

From:

TeenaHal@aol.com

To: Cc: Cesar Zapata/R4/USEPA/US@EPA

Sean Ireland/R4/USEPA/US@EPA, sheronlear@insightbb.com

Date: Subject: 08/17/2010 11:21 AM Fwd: KDOW Public Notice

Hello.

Note: Finally, I got a couple of KPDES notices today. Of course, I had received notices for many years

However, I received no public notice (nor was the public notice on the new KY DOW website (website was changed last week without any notice) } for last night's hearing for stormwater permit.

Also the verbiage given before the hearing by Larry Sowder last night seems an attempt to intimidate speakers. The presentation by KY Div of Water (Sowder) is prolonged to keep telling those present how speakers will be stopped - the public knows if they are disobedient that they will be removed from a

Under the prior KY DOW Director Jack Wilson (in office 14 years) the public was NEVER treated this way AND we were not given this KY DOW language before (or else I didn't pay close attention before).

I'll be trying to find out why this language is now used and when it began from Larry Sowder. I know he has to present however he is told and this is not directed against him in any way, only the way KY DOW has changed and the current way KY DOW has chosen to treat the public.

Primacy needs to be given back to USEPA because KY DOW has such a deplorable record for poor water quality listings of our streams. Turning stormwater over to MSD and the other co-permittees who also have a deplorable record for enforcement or collecting any fines and for not following through with problem cases. Also for KY DOW not seeing that MSD has adequately trained site inspectors: inspectors who do not report problems or take action on erosion and sedimentation problems (until after IPL (Metro Louisville Inspections, Permits & Licenses) report violations and another MSD inspector is sent out to find a long list of problems is not only deplorable but not understandable.

Erosion is a MAJOR problem and when long time inspectors do not report violations, it shows that MSD should not hold the stormwater permit AND KY DOW should not have primacy. We ask for USEPA to take back primacy.

Below, I am told I am now on the public notice list. I had previously sent the info when a "test" email was sent to me. And surely EPA understands that I did not receive any notices and no notice for last night's hearing. Yesterday, I asked KY DOW Vickie Prather to put me on the public notice list; however, EPA knows that my email was corrected awhile back - yet no notices ever sent until today. Again, this shows KY DOW primacy needs to revert back to EPA. This is the second notice from KY DOW that I was "inadvertently" removed from the email distribution list. Sincerely.

Teena Halbig Vice President Floyds Fork Environmental Association cc: Sheron Lear, President FFEA

From: DOWPublicNotice@ky.gov

To: teenahal@aol.com

Sent: 8/17/2010 8:16:58 A.M. Eastern Daylight Time

Subj: KDOW Public Notice

Teena

You have been added to the public notice distribution list and will be receiving e-mails of permits being noticed. During the conversion to our new system your e-mail address was inadvertently removed the distribution list. I apologize for any inconvenience this may have caused you.

Larry Sowder

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
SAM NUNN
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA GEORGIA 30303-8960

JUN 0 1 2010

Ms. Sandy Grusesky Director, Division of Water Kentucky Department for Environmental Protection 200 Fair Oaks Lane, Fourth Floor Frankfort, Kentucky 40601

Dear Ms. Grusesky:

On March 15, 2010, a coalition of Kentucky Citizen Groups submitted to the Environmental Protection Agency (EPA), a formal petition (the Petition) to commence proceedings to determine whether to withdraw approval of the Commonwealth of Kentucky's National Pollutant Discharge Elimination System (NPDES) program. In a letter dated April 23, 2010, we requested that Kentucky Division of Water (KDOW) provide a response to the issues raised by the Petition within sixty (60) days of receipt of that letter. Since that time, EPA has received a supplement (Supplement) to the Petition and a separate letter from Floyds Fork Environmental Association (FFEA) also requesting that EPA withdraw Kentucky's authority to implement the NPDES program. We understand that Kentucky was copied on the Supplement to the Petition. A copy of the FFEA Petition is enclosed for your review.

Because the FFEA Petition, and a supplement to the petition, all raise overlapping issues, EPA is intending to conduct a consolidated review and develop a consolidated response. Accordingly, EPA requests that your response to the Petition and any additional response that you have to the information in the Supplement and/or to the FEEA Petition be provided to EPA by July 30, 2010.

Should you have any questions regarding this matter, please contact Mr. Doug Mundrick, Acting Deputy Director of the Water Protection Division at (404) 562-9328.

Sincerely,

Vames D Giattina Director

Water Protection Division

Munhich

Enclosure: FFEA Petition

cc: Mr. Joseph M. Lovett, Appalachian Center for the Economy

Ms. Margaret C. Janes, Appalachian Center for the Economy

Mr. Jim Hecker, Public Justice

Mr. Aaron Isherwood, Sierra Club Environmental Law Program

Mr. Michael H. Shapiro, USEPA

Ms. Teena Halbig, Floyds Fork Environmental Association

FLOYDS FORK ENVIRONMENTAL ASSOCIATION

Floyds Fork Environmental Association 6505 Echo Trail Louisville, KY 40299-5103 (502) 267-6883 teenahal@aol.com

US EPA Water Enforcement Branch Mr. Sean Ireland 61 Forsyth Street Atlanta, Georgia 30303

A 11: 32

3-23-10

Dear Mr. Ireland,

MSD held what was termed a "public meeting" but no public input was to be considered by MSD on March 16 from 4-7 P. M. Public hearings or meetings must be provided for any action other than those found to have little or no environmental effect (reference 40 C.F.R. 35.3140 (b)(4)(iii).

There were 3 foam boards and alternate 3 would be the MSD presented plan "as is" to USEPA. When I asked Brian Bingham the purpose of the meeting, he said it was a public meeting. I said, "A public meeting but no public input was to be considered — only that MSD would present the Alternate 3 plan to USEPA". Earlier, Mark Johnson was asked by Jeff Frank when the plan would be presented and who to contact at EPA. While he didn't respond readily, Dave Schaftlein, MSD engineer, said "Cesar Zapata and Sean Ireland" (and he spelled Sean) while Jeff wrote this down.

MSD is adamant that public input will not be considered. MSD will only present the MSD planned Alternate 3 without any changes post the meeting held.

Since Project WIN materials were laid on a tabletop, I am reminded that FFEA was excluded from any participation whatsoever in Project WIN (Watershed Initiative Now). The wet-weather team did not include FFEA that has been in existence since 1991 and is a well-known group focused on Floyds Fork Creek and the Salt River Basin.

While more public involvement is needed and necessary, MSD continually closes the door to the public. A prime example is in HB221 – it took a lot of work and effort to crack the door but it is still not open and lacks enough transparency. There are not meetings on the front end – only on the MSD 'done' end.

Overall planning is not evident since there is no coordination with the Floyds Fork Development Review Overlay (attachment) or any of the many organizations (private and government) procuring conservation easements, lack of community planning, etc.

Mark Johnson, MSD Chief District engineer, insisted at the meeting 3-16-10 that MSD will put sewers (I was told sewer lines could be 42" up to 60" for the lines mapped) where hundreds of acres of these conservation easements (but the large acreages will never be developed for housing) and easements are being worked on actively by these land trusts. This is a major effort that is receiving NATIONAL attention for this 27 miles of nearly 4000 acres that has been obtained with a quest to get 10,000 acres in the Floyds Fork area – acreage that can be preserved, in Silva culture (at least 2 are in conservation easements along Floyds Fork Creek), develop as 2 state of the art parks (one contiguous of 1100 acres0, healthy hiking & biking & horse trails, retain as farmland for animals and crops, etc. There is a winery of hundreds of acres in the watershed. As a past Metro Parks Commissioner (for 6 years), I know there are 3 Metro Government parks of several hundred acres along Floyds Fork Creek (one is not adjacent but in the watershed).

I can only let your agency know that in 1993, the federal government (Superfund) did take into account the planning that Jefferson County was just putting in place as the Floyds Fork DRO. We were also effective in asking MSD (under Director Gordon Garner) to not put the Floyds Fork WWTP on the Osterriter property; MSD settled on the William F. Miles Property to build it.

Another item of great importance: Primacy needs to revert back to USEPA since the Kentucky Division of Water and MSD have a known record of poor water quality in our state. Primacy over water needs to be taken back from Kentucky as soon as possible – please see that the appropriate person/branch or Administrator Lisa Jackson at EPA receives this request. Different leadership is necessary. Example: A pathogens TMDL the USEPA has in consideration needs to be placed on Floyds Fork Creek to protect the public because KY and Local Government/MSD have allowed this to occur.

Three items: 1. FFEA regrets seeing such a 'meeting' where public input is not considered. 2. FFEA was excluded from participation in Project WIN. 3. Please consider the planning of land conservation and the existing Floyds Fork DRO that was passed by the planning Commission, 14 small cities, and Fiscal Court in 1993 after 2 public hearing with approximately 600 attending plus a 60 member task force (myself and other FFEA members served with developers and others) for one and a half years to get this additional layer (overlay) of planning. And 4. Please take primacy over KY waters.

Are such meetings under 200KAR 17.050 6(1)(d)? Under the Clean Water Act, Congress explicitly provided that, "public participation in the development, revision, and enforcement of any regulation, standard, effluent limitation, plan, or program established by the Administrator or any State under this chapter shall be provided for, encouraged, and assisted by the Administrator and the States" (reference 33 U.S.C.A. 1251(e). Please

take back the NPDES/KPDES State-based permitting {reference 33 U.S.C.A. 1251 (e) and 33 U.S.C.A. 1342(b)}.

Thank you for your consideration of these comments.

Sincerely,

Teena Halbig Vice President

Floyds Fork Environmental Association

	*		

Pearce, Jennifer

From:

Fredenburg, Andrea (EEC) <Andrea.Fredenburg@ky.gov>

Sent:

Monday, March 07, 2016 11:47 AM

To:

Wool, Tim

Subject:

RE: Time to talk about Floyds Fork Model

Follow Up Flag:

Flag for follow up

Flag Status:

Flagged

Yes, we will call you.

Ann

From: Wool, Tim [mailto:Wool.Tim@epa.gov] Sent: Monday, March 07, 2016 11:27 AM

To: Fredenburg, Andrea (EEC)

Cc: Jacobs, Alicia (EEC); Keatley, Andrea (EEC) Subject: RE: Time to talk about Floyds Fork Model

That will work. You calling me?

Tim Wool

From: Fredenburg, Andrea (EEC) [mailto:Andrea.Fredenburg@ky.gov]

Sent: Monday, March 07, 2016 11:12 AM To: Wool, Tim < Wool. Tim@epa.gov>

Cc: Jacobs, Alicia (EEC) < Alicia.Jacobs@ky.gov >; Keatley, Andrea (EEC) < Andrea.Keatley@ky.gov >

Subject: RE: Time to talk about Floyds Fork Model

Hi Tim,

We have an hour from 1-2PM, if that works.

Ann

From: Wool, Tim [mailto:Wool.Tim@epa.gov]
Sent: Monday, March 07, 2016 9:22 AM

To: Fredenburg, Andrea (EEC)

Subject: Time to talk about Floyds Fork Model

Ann:

Do you have some time today to talk about Floyds Fork? Brian Watson copied me on an email that you sent him, need to discuss.

Thanks

Tim Wool | Water Quality Planning Branch/Data and Information Analysis Section U.S. Environmental Protection Agency | 61 Forsyth Street, SW | Atlanta, GA 30303

■ 404-562-9260

wool.tim@epa.gov

www.epa.gov

www

Pearce, Jennifer

From:

Wool, Tim

Sent:

Tuesday, March 01, 2016 7:56 AM

To: Subject:

Brian Watson RE: Floyds Fork

Follow Up Flag:

Flag for follow up

Flag Status:

Flagged

I will call you.

Tim Wool

From: Watson, Brian [mailto:brian.watson@tetratech.com]

Sent: Monday, February 29, 2016 3:43 PM To: Wool, Tim < Wool. Tim@epa.gov>

Subject: FW: Floyds Fork

Tim,

Do you want me to respond?

Brian

From: Fredenburg, Andrea (EEC) [mailto:Andrea.Fredenburg@ky.gov]

Sent: Monday, February 29, 2016 3:40 PM

To: Watson, Brian < brian.watson@tetratech.com>

Subject: Floyds Fork

Hi Brian,

We've had a little movement on the Floyds Fork model and TMDL. We have some questions and were wondering if you'd be willing to have a conference call with us (me and my new management). We are trying to determine whether the BOD calibration is good enough to produce updated organic enrichment TMDLs. We may pick your brain for your opinion on this.

A specific question:

There was a detection limit issue for BOD. USGS data detection limit was 2 mg/L cBOD used for calibration and MSD data for validation data was BOD with detection limit of 1-2 mg/L but model plots showed calibrating for non-detect at <5 mg/L. Why the difference?

I'm sure there will be questions from management regarding the nutrient TMDLs and the possibility of updating some of the point source information.

If you are willing to talk, let me know some blocks of good times and I'll send out a meeting request.

Thanks,

Ann

Andrea M. Fredenburg
TMDL Section
KY Division of Water
(502)-564-3410 ext 4876

Pearce, Jennifer

From:

Wool, Tim

Sent:

Monday, March 07, 2016 9:19 AM

To:

Purify, Johnnie

Subject:

FW: Floyd's Fork TMDL call-in #: (404) 562-9978 code: 629978#

Follow Up Flag:

Flag for follow up

Flag Status:

Flagged

FYI

Tim Wool

-----Original Message-----From: Benante, Joanne

Sent: Friday, March 04, 2016 8:23 AM

To: Goodmann, Peter (EEC) <Peter.Goodmann@ky.gov>; Giattina, James <Giattina.Jim@epa.gov>

Cc: Danois, Gracy R. <Danois.Gracy@epa.gov>; Feingold, Amy <Feingold.Amy@epa.gov>; Brown, Whitley (EEC) <whitley.brown@ky.gov>; Keatley, Andrea (EEC) <Andrea.Keatley@ky.gov>; Wool, Tim <Wool.Tim@epa.gov>; Danois,

Gracy R. <Danois.Gracy@epa.gov>

Subject: RE: Floyd's Fork TMDL call-in #: (404) 562-9978 code: 629978#

Pete,

We DO need to talk soon about your plans for the Floyds Fork TMDL. Do you plan to finalize it? I understand your folks are calling Tetratech for modeling information. If you all are moving forward with completing the TMDL we are very much in support of that and would like to discuss how we might be able to assist. However as you know we spent quite a bit of money on the Tt contract and we really don't have any money in the coffer's now to obligate to Tt. I've asked Tim Wool to send your folks the information they were requesting from Tt because we have it in house but if there is other information on the modeling side that is needed we should discuss. I just want to be sure not to get messed up in a contracting snafu. If you have a sliver of time and just want to give me a call please feel free to do that at 404-562-9125. Thanks Pete Joanne

----Original Message----

From: Goodmann, Peter (EEC) [mailto:Peter.Goodmann@ky.gov]

Sent: Thursday, March 03, 2016 7:36 PM

To: Giattina, James < Giattina. Jim@epa.gov>

Cc: Danois, Gracy R. <Danois.Gracy@epa.gov>; Benante, Joanne <benante.joanne@epa.gov>; Feingold, Amy

<Feingold.Amy@epa.gov>; Brown, Whitley (EEC) <whitley.brown@ky.gov>; Keatley, Andrea (EEC)

<Andrea.Keatley@ky.gov>

Subject: Re: Floyd's Fork TMDL call-in #: (404) 562-9978 code: 629978#

I can't do this as I am in mtgs in DC at ACWA.!ill have Whitley get with Gracy to reschedule.

I have talked to shed Frank and agreed to meet with him end March. We are working on a strategy.

Sent from my iPhone

> On Mar 3, 2016, at 6:01 PM, Giattina, James < Giattina. Jim@epa.gov> wrote:

> POC: Gracy Danois

>

> <meeting.ics>